

 Foto: Thomas Josek/JosekDesign

CHEOPS
Cologne High Efficient Operating Platform for Science

Brief Instructions
(Version: 19.07.2022)

Viktor Achter
Dr. Stefan Borowski

Lech Nieroda
Dr. Lars Packschies

Volker Winkelmann

HPC team: hpc-mgr@uni-koeln.de
Scientific support: wiss-anwendung@uni-koeln.de

mailto:hpc-mgr@uni-koeln.de
mailto:wiss-anwendung@uni-koeln.de

1

Contents

1 Scope of this document .. 2

2 Contacts for support .. 2

3 Description of the system .. 2

3.1 Who may use this service? .. 3

3.2 How do I gain access? .. 3

3.2.1 How to get a user account .. 3

3.2.2 How to get HPC authorization .. 4

3.3 Server addresses.. 4

3.4 Structure of the file system ... 4

3.4.1 Quotas ... 5

3.5 What you should do on first login ... 5

3.6 How to archive data .. 5

4 Environment modules .. 6

4.1 Overview of important module commands .. 6

4.2 Usage notes ... 7

5 Batch system (SLURM) ... 7

5.1 Overview of important SLURM commands ... 7

5.2 Partitions ... 7

5.3 Resources and environment ... 8

5.4 Batch job scripts .. 11

5.5 Job arrays and interactive jobs .. 13

6 Development environment .. 15

6.1 Compilers ... 15

6.1.1 Julia language .. 16

6.2 Libraries ... 16

6.2.1 Intel MKL ... 16

6.3 MPI libraries... 17

6.3.1 Intel MPI .. 17

6.3.2 Open MPI .. 18

6.3.3 MPI runtime environment .. 18

6.4 Debugger ... 18

6.4.1 ARM Forge/DDT .. 18

6.4.2 Perforce TotalView ... 19

6.4.3 Intel Inspector ... 19

6.5 Profiler ... 20

6.5.1 PAPI Library ... 20

6.5.2 Intel Advisor .. 20

6.5.3 Intel VTune Amplifier .. 20

6.5.4 Intel Trace Analyzer and Collector .. 21

6.5.5 ARM Forge/MAP ... 22

6.5.6 Vampir... 22

2

 Foto: Thomas Josek/JosekDesign

1 Scope of this document
This document introduces to the usage of the CHEOPS cluster, which includes the overview
of the development software environment. For information on the application software,
please see the document “CHEOPS Application Software”.

2 Contacts for support
HPC team, hpc-mgr@uni-koeln.de:
Operation of HPC systems, parallel computing, batch system, development software

Scientific support, wiss-anwendung@uni-koeln.de:
Scientific applications, scientific computing, access to HPC systems

If you send a support request to one of these contacts, please provide all relevant infor-
mation to describe the issue you encountered. First, error messages are crucial for analysis
and should be provided with the request. Such messages are usually printed to standard
error (stderr) or standard output (stdout) streams. Depending on what you are doing,
either you will see these messages on the screen or the streams are redirected into files.
Moreover, accompanying information is very helpful to shorten analysis. For instance, if the
batch system fails to run a job, you should always provide the job identifier with your report.
If building of an application fails with an error, you should provide name and version of com-
piler and libraries used.

3 Description of the system
CHEOPS is a high performance computing cluster for science, which is provided by the
Regional Computing Centre of Cologne (RRZK) together with the HPC expert Bull.

The complete cluster is in production since the end of 2010. With more than 100 TFlop/s
peak and 85.9 TFlop/s Linpack performance, it was ranked to be the 89th fastest
supercomputer worldwide in the Top500 list from November 2010 (www.top500.org).

mailto:hpc-mgr@uni-koeln.de
mailto:wiss-anwendung@uni-koeln.de
http://www.top500.org/

3

CHEOPS is an InfiniBand coupled HPC cluster with dual socket INCA compute nodes:

 215 x 2 Nehalem EP quad-core processors (Xeon X5550, 2.66 GHz), 24 GB RAM

 432 x 2 Westmere hexa-core processors (Xeon X5650, 2.66 GHz), 24 GB RAM

 170 x 2 Westmere hexa-core processors (Xeon X5650, 2.66 GHz), 48 GB RAM

and quad socket MESCA compute nodes:

 24 x 4 Nehalem EX octo-core processors (Xeon X7560, 2.27 GHz), 512 GB RAM

The node interconnect is based on InfiniBand QDR, which is a broadband bus technology
with exceptionally small latency. It was specifically developed for HPC clusters and delivers a

gross bandwidth of 40 Gb/s and latencies of less than 5 s. The INCA compute nodes provide
two Intel Nehalem EP quad-core processors (Xeon X5550) and Intel Westmere hexa-core
processors (Xeon X5650), respectively. The MESCA nodes are equipped with four Intel
Nehalem EX octo-core processors (Xeon X7560). Intel’s Nehalem (and Westmere)
architecture stands for high memory bandwidth and a fast interconnect between cores as
well as processors, which perfectly matches the demands of HPC.
CHEOPS uses the General Parallel File System (GPFS) as parallel file systems. GPFS is based
on a DDN GRIDScaler GS7K appliance providing a gross capacity of 2.8 PB (2.1 PB net) and a
Dell EMC storage delivering a gross capacity of 484 TB (363 TB net).

3.1 Who may use this service?
Scientists from NRW may use CHEOPS for scientific, non-commercial purposes. This service is
free of charge. We kindly ask all users to acknowledge the usage of CHEOPS in their publica-
tions by a statement: We furthermore thank the Regional Computing Center of the Universi-
ty of Cologne (RRZK) for providing computing time on the DFG-funded (Funding number:
INST 216/512/1FUGG) High Performance Computing (HPC) system CHEOPS as well as sup-
port.

3.2 How do I gain access?
To gain access to CHEOPS, you need an existing user account of the University of Cologne
and HPC authorization. The user account enables you to use common services offered by the
RRZK. The HPC authorization additionally enables access to the HPC systems. If you need
help with completing the forms, you may ask for support at the RRZK-Helpdesk or the
scientific support.

3.2.1 How to get a user account

Students and employees of the University of Cologne already have a student (smail) and
employee account, respectively. Members from other universities of the federal state
Nordrhein-Westfalen may apply for a guest account using the guest account form.
With your user account there comes an email account username@(smail.)uni-koeln.de.
Please retrieve emails from this account to receive important messages (e.g. maintenance of
the cluster, expiration of your account). If you are using a different email account, you
should set an according forward on the mail portal.

http://rrzk.uni-koeln.de/autorisierung-hpc.html?&L=1
https://mailportal.uni-koeln.de/

4

3.2.2 How to get HPC authorization

If you have your user account, you need to send the completed HPC authorization form to
the scientific support. With HPC authorization granted, you also get an account on CHEOPS.
If you only need a small amount of computing time, e.g. your project is in an early phase and
you only want to test your application, you may apply for a test account. It will be limited to
a certain amount of computing time (e.g. 1000 CPU hours). For a test account, there is no
need for a project description.
If you need more computing time, you may apply for a full account, which requires a de-
tailed project description. Of course, you can apply for a full account right away, if you are
already set to go and have a clear description of your project.
In both cases, please use the HPC authorization form.

Links:
http://rrzk.uni-koeln.de/autorisierung-hpc.html?&L=1
https://mailportal.uni-koeln.de

3.3 Server addresses
NOTE: For the time being, we have two operating system installations on CHEOPS, CentOS7
(the new one) accessible via cheops1.rrz.uni-koeln.de and RHEL6 (the old one) acces-
sible via cheops0.rrz.uni-koeln.de. The default cheops.rrz.uni-koeln.de refers
to cheops1.rrz.uni-koeln.de. Please, start your workflow on the new CentOS7 side of
the cluster.

Function Address Protocols Status

Login Node cheops.rrz.uni-koeln.de ssh OK

Monitoring/Ganglia https://cheops-ohpc-ganglia.rrz.uni-koeln.de/ http OK

All Nodes are accessible within the university network (UKLAN). If you are outside this net-
work, you may login through the server dialog.rrz.uni-koeln.de and from there ac-
cess CHEOPS via Secure Shell (SSH) with trusted X11 forwarding:

ssh -Y userid@dialog.rrz.uni-koeln.de

ssh -Y userid@cheops.rrz.uni-koeln.de

Alternatively, you may connect to UKLAN via a Virtual Private Network (VPN) client. To do
this, follow the instructions for VPN access on the RRZK webpage. You will then be virtually
integrated into the UKLAN and will be able to directly connect to all services.

Links:
http://rrzk.uni-koeln.de/vpn.html?&L=1

3.4 Structure of the file system
As our users are used to, the parallel storage based on GPFS is organized into three file sys-
tems with differing bandwidth. The following table gives an overview:

File system
/location

Storage Capacity Quota per
user

Speed Backup/archive

http://rrzk.uni-koeln.de/autorisierung-hpc.html?&L=1
http://rrzk.uni-koeln.de/autorisierung-hpc.html?&L=1
http://rrzk.uni-koeln.de/autorisierung-hpc.html?&L=1
https://mailportal.uni-koeln.de/
https://cheops-ohpc-ganglia.rrz.uni-koeln.de/
http://rrzk.uni-koeln.de/vpn.html?&L=1
http://rrzk.uni-koeln.de/vpn.html?&L=1

5

/home GPFS 22 TiB (24 TB) 100 GB,
100,000 files

Low Daily

/projects GPFS 1.9 PiB (2.1 PB) As requested Medium - low Archive must
be requested
(elsewise none)

/scratch GPFS 330 TiB (363 TB) 1,000,000
files

High None
 (data will be
 deleted after
 30 days)

NOTE: Parallel file systems are not generally known to be the most stable files systems.
Please make sure that important data in /projects is archived (see Section 3.6).

As can be seen in the table, the number of files in home and scratch directories is limited by
separate quotas. The reason for this is that the amount of files has severe impact on the per-
formance of a parallel file system as well as on backup and cleanup. If you are getting in
trouble because of this, please contact the RRZK scientific support or HPC team.

3.4.1 Quotas

On GPFS, there are quotas. Usage or block quota limits the amount of data (e.g. 100GB). File
or inode quota limits the number of files (e.g. 100,000). To see the quota status of GPFS file
systems /home, /projects as well as /scratch use the shell script command

lsquota

we have provided for summarizing all quotas.

3.5 What you should do on first login
If you access CHEOPS for the first time via SSH, a key pair is generated for the access to the
compute nodes. Please do not provide a password for the keys. Accessing the compute
nodes has to work without a password. After this, you are set to go!

3.6 How to archive data
To archive data in your project directory, you first need a TSM registration for archiving.
With the registration, you are provided a nodename referring to your archive space. Then,
you can access this archive space with the TSM client on the login node cheops.rrz.uni-
koeln.de. Before archiving of data you should create a personal configuration file dsm.opt
with the following content:

servername adsm4n

virtualnode nodename

subdir yes

The server for archiving is named adsm4n. As virtual node, you should provide your personal
nodename. For simple data management, subdirectories are to be included. The TSM client

http://rrzk.uni-koeln.de/antrag-tsm.html

6

can be launched with the command line user interface dsmc or the graphical user interface
dsmj. For archiving, you should use the command line client:

dsmc archive /projects/project/tobearchived/ \

-des=archivename -optfile=/path_to_dsm.opt/dsm.opt

The trailing slash on the directory is crucial for dsmc to recognize: it is a directory not a file.
The archive name archivename will help you finding data to be retrieved from a specific
archive. For retrieving data, you should use the graphical client

dsmj -optfile=/path_to_dsm.opt/dsm.opt

Within the graphical user interface, you can browse the content of your archives for data to
be retrieved. For both command and graphical user interface, an absolute pathname of
dsm.opt is needed (with slash in front).

NOTE: The purpose of an archive is different from that of a backup. A backup saves frequent-
ly changing data. However, an archive saves data that does not change anymore (e.g. re-
sults). Therefore, you should not archive your whole project directory but finished subdirec-
tories. You can retrieve this data on any computer with a TSM client (e.g. workstation or lap-
top) for further processing.

Links:
http://rrzk.uni-koeln.de/tsm.html
https://www.ibm.com/docs/en/spectrum-protect/8.1.14?topic=clients-archive-retrieve-
your-data-unix-linux

4 Environment modules
CHEOPS provides a wide range of development software (compilers, libraries, debuggers,
profilers, etc.) as well as specific scientific applications. Many of the available programs re-
quire certain environment variables to be set or changed, e.g. PATH, LD_LIBRARY_PATH
and MANPATH. The environment modules package is employed to access or switch between
various sometimes conflicting versions of software. It provides the means to change the en-
vironment dynamically by loading, switching or unloading specific software modules. The
module installation is customized to automatically resolve dependencies between modules.
Furthermore, a quick usage primer is displayed upon loading.

4.1 Overview of important module commands

Command Function
module avail Shows all available modules
module whatis [module] Shows a short description of all or a specific module
module display|show module Shows the environment changes the module would

have applied if loaded
module add|load module Loads the module module, i.e. sets all necessary vari-

ables for the corresponding software and loads re-
quired modules

module list Shows all currently loaded modules
module rm|unload module Removes the module module, i.e. removes all envi-

http://rrzk.uni-koeln.de/tsm.html
https://www.ibm.com/docs/en/spectrum-protect/8.1.14?topic=clients-archive-retrieve-your-data-unix-linux
https://www.ibm.com/docs/en/spectrum-protect/8.1.14?topic=clients-archive-retrieve-your-data-unix-linux

7

ronment settings, which were introduced by loading
the module, and removes dependent modules

module purge Removes all loaded modules

4.2 Usage notes
A module can either be identified by its name only or its name together with a specific ver-
sion, for example intel or intel/19.0, respectively. When only the name is specified, the
default version as shown by module avail is loaded.

 Loading a module changes the environment of the shell in which it is loaded

 If other already loaded modules conflict with the module to load, an according error
message is displayed and no further changes are made

 If other modules are required by the module to load, these are loaded recursively
and an according message is displayed

 Removing a module reverts the changes in the environment of the shell

 If other modules depend on the module to remove, these are removed recursively
and an according message is displayed

Links:
http://modules.sourceforge.net

5 Batch system (SLURM)
CHEOPS uses the Simple Linux Utility for Resource Management (SLURM) to control the us-
age of the compute nodes and to schedule and execute jobs.
Interaction with the system is carried out by SLURM commands, e.g. sbatch, squeue, sin-
fo, scancel. Resource requests can be added directly as command line options or through
appropriate #SBATCH directives in the job scripts. Users can submit jobs from the login node
cheops. The total number of submitted jobs or job instances per user (see section 5.5 con-
cerning job arrays) is limited to 1536.

5.1 Overview of important SLURM commands

Command Function
sbatch script.sh Submits batch job running script script.sh
salloc [options] srun

[options] command
Submits interactive job with command

salloc srun --pty bash Submits interactive job shell for 1 core, 1GB RAM,6 hours
squeue Shows all current jobs
squeue -j jobid Shows detailed status information on job jobid
sstat jobid Shows detailed runtime information on job jobid
scontrol show job jobid Shows detailed resource information on job jobid
scancel jobid Cancels the job jobid
squeue --start -j jobid Shows an approximate time slot for job jobid. This es-

timation might change significantly until the job starts.

5.2 Partitions
The batch system offers several partitions, also called queues, which have various resource
limits and requirements. Jobs submitted without a partition specified are automatically

http://modules.sourceforge.net/

8

routed to a partition which corresponds to the given resource request; should this fail due to
exceeded limits, the job is immediately rejected at submission time with a corresponding
error message. Single-node jobs are routed to the partition smp-rh7 and are assigned to
cores of an INCA or MESCA node depending on the size of memory requested. Multi-node
jobs are routed to the partitions mpi-rh7 or mpi-core-rh7. The partition mpi-rh7 is for
node-based jobs with memory request per node and assigns to a specific number of cores
per INCA node. The partition mpi-core-rh7 is for core-based jobs with memory request
per core and assigns to a specific total number of cores gathered from a certain number of
INCA nodes needed. The development partition devel-rh7 is for short test jobs – it offers a
high response time albeit at the price of strict limits. The partition interactive-rh7 is
reserved for interactive jobs only, regular batch jobs submitted with sbatch are not allowed
(see Section 5.5). Specific partitions must be explicitly selected with the option --
partition. Here the current partition based resource limits and requirements for all avail-
able partitions:

Partition Resource Minimum Maximum
mpi-rh7 Number of nodes 2 128
 Number of cores 2 1536
 Memory per node -- 46gb

 Total wall time -- 360 h
mpi-core-rh7 Number of nodes 2 --
 Number of cores 2 1536
 Memory per core -- 46gb
 Total wall time -- 360 h
smp-rh7 Number of nodes 1 1
 Number of cores 1 32
 Memory per node -- 500gb
 Total wall time -- 720 h
devel-rh7 Number of nodes 1 2
 Number of cores 1 24
 Memory per node -- 46gb
 Total wall time -- 1 h
interactive-rh7 Number of nodes 1 1
 Number of cores 1 32
 Memory per node -- 450gb
 Total wall time -- 336 h

Node based resource limits introduced by features of different node types are listed in the
feature table in Section 5.3. Please use those to specify resource requests in detail.

5.3 Resources and environment
In SLURM terminology “tasks” are the resources required to handle separate processes, in-
cluding MPI processes. They can be requested for the entire job (--ntasks) or per node (--
ntasks-per-node). Multiple cores per task (--cpus-per-task) are required for threads,
e.g. within hybrid MPI or SMP Jobs. The memory resource can be requested per node (--
mem) or per core (--mem-per-cpu). In order to use a local HDD or SSD on a compute node,
it is necessary to use the special --gres=localtmp option and access a certain directory

9

(see following table). Please note that most of the INCA nodes have 70 GB local storage
available and the remaining INCA nodes provide 10+ GB only. The MESCA nodes have about
390 GB available.
The following table provides a more detailed description of the most common resource
specifications:

sbatch / salloc Option Function
--partition=partition Defines the destination of the job. Only necessary for parti-

tion devel-rh7 and interactive-rh7. Other partitions
are automatically addressed according to resource request.
Default: automatic routing

--nodes=nodes Defines the number of nodes for the job. Default: 1
--ntasks=ntasks Defines the number of tasks for the job. Each task is mapped

to a core, unless the option --cpus-per-task is specified.
Default: 1

--ntasks-per-node=tpn Defines the maximum number of tasks per node. Used main-
ly with MPI applications. Default: 1

--cpus-per-task=cpt Defines the number of cores per task. The resource manager
will allocate those cores for threads within the according
task. Default: 1

--mem=mem Defines the per-node memory limit of the job. The job will be
canceled automatically when this limit is exceeded. The for-
mat for mem is an integer value followed by mb or gb, e.g.
10gb. Default: --mem=1000mb

--mem-per-cpu=mem Defines the per-core memory limit of the job. See --mem
above for further information. Default: none

--time=walltime Defines the wall time limit of the job. The job will be can-
celed automatically when this limit is exceeded. The format
for walltime is HH:MM:SS. Default: walltime=01:00:00

--gres=localtmp:size Defines the size (in gigabytes) to use in the /local partition,
the format for size is an integer followed by G, e.g. 10G.
The requested space is then accessible through the directory
/local/${USER}.${SLURM_JOB_ID} in the job

--account=acct_string Defines the account string. You should provide the appropri-
ate project/account. Default: UniKoeln

--output=filename

(only in sbatch)
Specifies file filename to collect stdout stream. Default:
join both stdout and stderr into slurm-%j.out with job
ID %j

--error=filename

(only in sbatch)
Specifies file filename to collect stderr stream. Default:
none

--mail-type=BEGIN,

END,FAIL,REQUEUE,ALL
Specifies when email is sent. The option argument may con-
sist of a combination of the allowed mail types.

--mail-user=

username@uni-koeln.de
Specifies the address to which email is sent. Please note that
only addresses of the form username@uni-koeln.de or
username@smail.uni-koeln.de are allowed.
Default: none

--array=array_request Specifies a job array (see Section 5.5).

mailto:username@uni-koeln.de
mailto:username@smail.uni-koeln.de

10

(only in sbatch)

The batch system offers two basic procedures to allocate jobs on compute nodes:

 The user can provide all necessary resources and resource limits, e.g. the number of
nodes and tasks per node, the maximum memory per node and the maximum wall
time. Then, the job will automatically be allocated to nodes that satisfy these re-
quests and waste as few cores and little memory as possible. For example

sbatch --nodes=2 --ntasks-per-node=4 --mem=50gb script.sh

automatically allocates the job to 2 nodes which have 4 cores and 50 GB available
each. Nodes with fewer available cores and less available memory, which meet the
requests, are preferred to reserve the remaining resources for larger jobs.

 In addition to given resources and resource limits the user can explicitly request spe-
cific groups of nodes by features. The allocation then considers only those nodes. The
syntax is as follows

sbatch --nodes=nnodes --ntasks-per-node=tpn --constraint

feature script.sh

Multiple features can be specified, together with logical operators like AND, OR, XOR
and a number of nodes required with each set of groups, for example:

sbatch --nodes=6 --ntasks-per-node=4 --constraint=

“[inca8*4&inca12*2]” script.sh

allocates the job with 6 nodes with 4 tasks each to 4 INCA Nehalem EP nodes and 2
INCA Westmere nodes.

Please refer to the following table for a detailed description of the available features to iden-
tify according node types with certain resource limits:

Feature #nodes Processor type #cores Physical
memory

Available
memory

inca 747 Nehalem EP/Westmere 8/12 24/48/192 GiB 22/46/188gb
inca8 180 Nehalem EP 8 24 GiB 22gb
inca8_24gb 180 Nehalem EP 8 24 GiB 22gb
inca12 567 Westmere 12 24/48/192 GiB 22/46/188gb
inca12_24gb 337 Westmere 12 24 GiB 22gb
inca12_48gb 225 Westmere 12 48 GiB 46gb
inca12_192gb 5 Westmere 12 192 GB 188gb
inca24gb 517 Nehalem EP/Westmere 8/12 24 GiB 22gb
inca48gb 225 Westmere 12 48 GiB 46gb
inca192gb 5 Westmere 12 192 GB 188gb
mesca 22 Nehalem EX 32 512 GiB 500gb

The common launcher mpirun from the MPI libraries has been replaced with the SLURM
launcher srun which automatically evaluates these resource settings, thus additional op-
tions like –n,–np,-perhost, etc. are not necessary (see Section 6.3.3).

11

Environment variables of the submission shell, e.g. set or changed by loaded modules, are
not carried over to a batch job but they are carried over to an interactive job. This default
behavior can be changed with the --export option. In both cases, the shell limits set in
.bashrc/.cshrc are propagated to the job shell.

For further options and details concerning the submission of batch jobs, see Section 5.4, for
interactive jobs see Section 5.5.

Links:
http://www.schedmd.com/slurmdocs/documentation.html

5.4 Batch job scripts
Job scripts are executable shell scripts, which contain resource request as well as the actual
commands to be executed. Please note that modules necessary for successful compilation
should be loaded accordingly in the job script during runtime. The runtime environment pro-
vides variables to refer to assigned resources: total number of tasks by SLURM_NTASKS,
number of tasks per node by SLURM_NTASKS_PER_NODE, and number of cores per task by
SLURM_CPUS_PER_TASK. For a quick start, use the following script templates:

SMP Job with multiple threads (e.g. 4 threads)
#!/bin/bash -l

#SBATCH --cpus-per-task=4

#SBATCH --mem=1024mb

#SBATCH --time=01:00:00

#SBATCH --account=UniKoeln

module load intel/19.0

workdir=/scratch/${USER}/${SLURM_JOB_ID}

mkdir -p $workdir

cp input.dat $workdir

cd $workdir

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

program input.dat

cd -

cp ${workdir}/results.dat .

Node-based MPI Job (e.g. 2 nodes, 8 MPI processes per node)
#!/bin/bash -l

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=8

#SBATCH --ntasks=16

#SBATCH --mem=8gb

#SBATCH --time=01:00:00

#SBATCH --account=UniKoeln

module load intel/19.0 intelmpi/2019

http://www.schedmd.com/slurmdocs/documentation.html

12

workdir=/scratch/${USER}/${SLURM_JOB_ID}

mkdir -p $workdir

cp input.dat $workdir

cd $workdir

srun -n $SLURM_NTASKS program input.dat

cd -

cp ${workdir}/results.dat .

Core-based MPI Job (e.g. 16 MPI processes)
#!/bin/bash -l

#SBATCH --ntasks=16

#SBATCH –-mem-per-cpu=1gb

#SBATCH --time=01:00:00

#SBATCH --account=UniKoeln

module load intel/19.0 intelmpi/2019

workdir=/scratch/${USER}/${SLURM_JOB_ID}

mkdir -p $workdir

cp input.dat $workdir

cd $workdir

srun -n $SLURM_NTASKS program input.dat

cd -

cp ${workdir}/results.dat .

To schedule a node-based MPI job, the batch system has to wait for a specified number of
idle cores per node. When scheduled, those jobs run more efficiently because of the regular
resources assigned. The batch system can schedule core-based MPI jobs faster because it
assigns a total number of idle cores from any set of nodes available. However, jobs distribut-
ed over a broader set of nodes run less efficiently because of the fragmentation of resources
assigned.

Hybrid MPI Job (e.g. 2 nodes, 2 MPI processes per node, 4 threads per MPI process)
#!/bin/bash -l

#SBATCH --nodes=2

#SBATCH --ntasks-per-node=2

#SBATCH --ntasks=4

#SBATCH --cpus-per-task=4

#SBATCH --mem=2gb

#SBATCH --time=01:00:00

#SBATCH --account=UniKoeln

module load intel/19.0 intelmpi/2019

workdir=/scratch/${USER}/${SLURM_JOB_ID}

13

mkdir -p $workdir

cp input.dat $workdir

cd $workdir

export OMP_NUM_THREADS=$SLURM_CPUS_PER_TASK

srun -n $SLURM_NTASKS program input.dat

cd -

cp ${workdir}/results.dat .

In Bourne shell like batch jobs the modules functionality is properly initialized by adding the
option -l, e.g. #!/bin/sh -l, in C shell like jobs no addition is needed.

5.5 Job arrays and interactive jobs
In addition to common jobs, there are two more special job types. The job array is meant for
jobs equal in script structure but using different input. It allows the submission of many job
instances of a single job script. The set of instances is provided by the argument ar-
ray_request following the specifying option --array. The format of array_request is
a range or a comma delimited list of ranges, e.g. 1-5 or 1,3-5. Each instance is assigned to
a new job ID, which is provided by the environment variable SLURM_JOB_ID. The task iden-
tifier can be referenced in the job script with SLURM_ARRAY_TASK_ID while the job array
identifier is retained in SLURM_ARRAY_JOB_ID. Please refer to the following example script
for a job array:

Job Array (e.g. 3 jobs)
#!/bin/bash -l

#SBATCH --nodes=1

#SBATCH --ntasks=1

#SBATCH --mem=1gb

#SBATCH --time=01:00:00

#SBATCH --account=UniKoeln

#SBATCH --array=0-2

module load intel/19.0

work-

dir=/scratch/${USER}/${SLURM_ARRAY_JOB_ID}_${SLURM_ARRAY_TASK_ID}

mkdir -p $workdir

cp input.${SLURM_ARRAY_TASK_ID} $workdir

cd $workdir

program input.${SLURM_ARRAY_TASK_ID}

cd -

cp ${workdir}/results.${SLURM_ARRAY_TASK_ID} .

The total number of submitted jobs and job array instances per user is limited to 1536.
Please keep in mind that job arrays instances should take a reasonable amount of wall time,

14

i.e. longer than 1 hour. Shorter runs should be merged into one job array instance appropri-
ately. The resource requests in the job script apply to each instance, not the entire array.

The interactive job offers flexibility for tests and experiments, both serial and parallel. It can
be submitted with the salloc command and will run on most cluster nodes. There is also a
dedicated partition interactive-rh7 as well. This partition can be requested by adding
the option --partition interactive-rh7. Otherwise, the job is scheduled on a regular
cluster node. The partition offers up to 32 cores and 450GB memory per job for a maximum
runtime of 2 weeks on a single node.
An interactive submission process can be described as follows: The submitted job is queued
and waits for scheduling after invoking salloc with various resource requests on the login
node. Once the job has been granted an allocation, the owner is given an environment for
executing his commands interactively with the srun command. He can use this environment
until either one of the resource limits is exceeded or the allocation is revoked. The re-
sources, e.g. number of tasks or nodes are taken automatically from the allocation and do
not have to be specified again for the srun command. The srun command can be launched
together with salloc in a single line or separately, one after the other, as shown in the fol-
lowing examples.

Interactive MPI Jobs must be allocated and launched directly from the login node, e.g.

cheops1$ salloc --ntasks-per-node=3 --nodes=2 --time=10:00 --mem 1gb

salloc: Pending job allocation <JOBID>

salloc: job <JOBID> queued and waiting for resources

salloc: job <JOBID> has been allocated resources

salloc: Granted job allocation <JOBID>

cheops1$ srun ./mpi_application

cheops1$ exit

salloc: Relinquishing job allocation <JOBID>

salloc: Job allocation <JOBID> has been revoked.

In the above example, the MPI application can use 1GB memory on 2 compute nodes with 3
tasks each for 10 minutes.

Interactive SMP Jobs must be allocated from the login node. The srun command is then

used to launch a shell on the compute node in pseudo terminal mode and the application
can be executed within, e.g.

cheops1$ salloc --ntasks=1 --cpus-per-task=8 --time=10:00 --mem 1gb

salloc: Pending job allocation <JOBID>

salloc: job <JOBID> queued and waiting for resources

salloc: job <JOBID> has been allocated resources

salloc: Granted job allocation <JOBID>

cheops1$ srun --pty bash

cheops10101$./smp_application

15

In the above example the application runs on a compute node, it can use up to 8 available
cores and 1GB memory for 10 minutes. Please note that interactive SMP Jobs must use only
one task and the number of threads is specified with the option --cpus-per-task. X11
forwarding may be enabled by adding the option --x11 to salloc.

6 Development environment
The three major parts of the development software environment are compilers, libraries and
tools. Currently, the installation looks like that (default versions in boldface):

 Compilers
o Intel compilers (version 17.0, 18.0, 19.0, 19.1, 2021)
o GNU compilers (version 4.8.5, 5.1.0, 7.4.0, 9.4.0)
o PGI compilers (version 17.7, 19.10)
o Nvidia compilers (version 20.11)
o Julia language (version 1.6.5)

 Libraries
o Intel MKL (Math Kernel Library, version 2017, 2018, 2019, 2020, 2021)
o Intel TBB (Threading Building Blocks, version 2017, 2018, 2019, 2020, 2021)

 MPI libraries
o Intel MPI (version 2017, 2018, 2019, 2019.9, 2021)
o Open MPI (version 1.8.6, 4.1.1)

 Debugger
o ARM Forge/DDT (version 22.0.2)
o Perforce TotalView (version 2022)
o Intel Inspector (version 2021)

 Profiler
o PAPI (Performance Application Programming Interface, version 5.2.0)
o Intel Advisor (version 2021)
o Intel VTune Amplifier (version 2019, 2020)
o Intel Trace Analyzer and Collector (version 2017, 2018, 2019, 2020, 2021)
o ARM Forge/MAP (version 22.0.2)
o Vampir (version 10.0.2) with Score-P (version 7.1)

If there is no preference on how to build an application, the Intel software should be used.

6.1 Compilers
Environment modules provide the environment of the compilers. After loading one of these
modules several commands invoke the compilers for according programming languages:

Compiler Modules C/C++ FORTRAN 77/90

Intel Compilers intel/* icc/icpc ifort

New Intel Compilers intel_new/* icx/icpx ifx/ifx

GNU Compilers gnu/* gcc/g++ gfortran

PGI Compilers pgi/* pgcc/pgc++ pgf77/pgf90

Nvidia Compilers nvhpc/* nvc/nvc++ nvfortran/nvfortran

16

Nehalem specific code can be generated by -xhost with the Intel compilers and by –
march=native with the GNU compilers. Common optimizations are performed by the gen-
eral option –O2 for all compilers.

Links:
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-
compiler-dev-guide-and-reference/top.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-
oneapi-dev-guide-and-reference/top.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gfortran/
https://docs.nvidia.com/hpc-sdk/pgi-compilers/19.10/x86/index.htm
https://docs.nvidia.com/hpc-sdk/archive/20.11/index.html

6.1.1 Julia language

Julia is a programming language for scientific computing. By Just-In-Time (JIT) compilation
using LLVM, it combines the ease of use from interpreter languages like Python or R with
efficiency and performance provided by common C compilers.
All versions of Julia were built with more recent GNU compiler versions than the operating
system provides. In our environment modules framework, we consider the modules julia
as compiler modules. Each of these modules expands the environment the needed GNU
compiler version inline and does not allow for other compiler modules loaded because of
conflicts. If you need to compile C/C++ code with your Julia application, please use gcc/g++
coming with the modules julia.
After loading a module julia, you can either start an interactive session on a login node

cheops1$ julia

julia> 1 + 2

3

julia> exit()

cheops1$

or run the script of your applicaton in a batch job on a compute node by

julia script.jl arg1 arg2 ...

in your job script.

Links:
https://julialang.org
https://docs.julialang.org

6.2 Libraries

6.2.1 Intel MKL

The MKL (Math Kernel Library) includes the functionality of many other libraries (BLAS,
LAPACK, FFT, Sparse BLAS) addressing mathematical operations and algorithms often need-
ed in scientific computing. Both shared memory and distributed memory is supported by

https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top.html
https://www.intel.com/content/www/us/en/develop/documentation/oneapi-dpcpp-cpp-compiler-dev-guide-and-reference/top.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top.html
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top.html
https://gcc.gnu.org/onlinedocs/
https://gcc.gnu.org/onlinedocs/gfortran/
https://docs.nvidia.com/hpc-sdk/pgi-compilers/19.10/x86/index.htm
https://docs.nvidia.com/hpc-sdk/archive/20.11/index.html
https://julialang.org/
https://docs.julialang.org/

17

multi-threaded routines and implementations using message passing (ScaLAPACK, PBLAS,
BLACS), respectively. Again, MKL is made available by the according environment module
mkl. In C/C++ the MKL header mkl.h has to be included. The common linkage scheme for
sequential processing is compiler specific because of the FORTRAN runtime libraries needed:

Compiler Linkage in C/C++ Linkage FORTRAN 77/90

Intel Compilers -lmkl_intel_lp64

-lmkl_sequential

-lmkl_core -lpthread

-lmkl_intel_lp64

-lmkl_sequential

-lmkl_core -lpthread

GNU Compilers -lmkl_intel_lp64

-lmkl_sequential

-lmkl_core -lpthread

-lm

-lmkl_gf_lp64

-lmkl_sequential

-lmkl_core -lpthread

PGI Compilers -lmkl_intel_lp64

-lmkl_sequential

-lmkl_core -lpthread

-lmkl_intel_lp64

-lmkl_sequential

-lmkl_core -lpthread

The common linkage scheme for multi-threaded processing is more complicated due to the
compiler specific threading:

Compiler Linkage in C/C++ Linkage FORTRAN 77/90

Intel Compilers -lmkl_intel_lp64

-lmkl_intel_thread

-lmkl_core

-liomp5 -lpthread

-lmkl_intel_lp64

-lmkl_intel_thread

-lmkl_core

-liomp5 -lpthread

GNU Compilers -lmkl_intel_lp64

-lmkl_intel_thread

-lmkl_core

-liomp5 -lpthread

-lm

-lmkl_gf_lp64

-lmkl_intel_thread

-lmkl_core

-liomp5 -lpthread

PGI Compilers -lmkl_intel_lp64

-lmkl_intel_thread

-lmkl_core

-liomp5 -lpthread

-lmkl_intel_lp64

-lmkl_intel_thread

-lmkl_core

-liomp5 -lpthread

The number of threads can be set by the environment variable MKL_NUM_THREADS or by
the more general OpenMP variable OMP_NUM_THREADS.

Links:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-
advisor.html

6.3 MPI libraries

6.3.1 Intel MPI

Intel MPI provides support of the MPI-3.1 standard. Again, Intel MPI is made available by the
according environment module intelmpi. The compiler scripts including header files and
linking libraries have compiler specific names:

Compiler C/C++ FORTRAN 77/90

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-link-line-advisor.html

18

Intel Compilers mpiicc/mpiicpc mpiifort/mpiifort

GNU Compilers mpigcc/mpigxx mpif77/mpif90

Integers of 8 bytes size are supported by the option -ilp64. Specific modules (version suffix
mt and dbg) provide thread safe and debugging libraries, respectively.

Links:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html

6.3.2 Open MPI

Open MPI is an open source implementation of the MPI-3.1 standard. It is made available by
the according environment module openmpi. Specific modules pointing to according builds
provide both support of 8 bytes integers (version suffix ilp64) and thread safety (version
suffix mt). The compiler scripts including header files and linking libraries have the same
naming for all compilers:

Compiler C/C++ FORTRAN 77/90

All Compilers mpicc/mpicxx mpif77/mpif90

Links:
https://www.open-mpi.org/doc/

6.3.3 MPI runtime environment

With the batch system SLURM, MPI applications can only be executed within jobs. The batch
system provides its own launcher srun, which tightly integrates the application processes.
Therefore, only the number of MPI processes has to be specified

srun -n $SLURM_NTASKS ./a.out

and is provided by SLURM as the number of tasks. Interactive invocation of this command is
only possible within interactive jobs. The SLURM runtime environment also provides pinning
and affinity of application processes according to the assigned resources. Therefore, options
or environment variables from the MPI libraries changing the runtime environment like pin-
ning are ignored and should not be used anymore (see Section 5.3).

6.4 Debugger

6.4.1 ARM Forge/DDT

Forge is a debugger/profiler from ARM for parallel applications (both multi-threaded and
MPI). As Forge is integrated with the Intel MPI and Open MPI libraries, the according envi-
ronment module forge requires an Intel MPI or Open MPI module. When using the debug-
ger DDT with the Intel MPI library, components of the Intel Trace Analyzer and Collector are
needed for the Intel Message Checker plugin and the according Trace Analyzer and Collector
module is required as well. Executables to be analyzed are instrumented by

mpiicc|mpigcc|mpiifort|mpif90… -g -O0

https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html
https://www.open-mpi.org/doc/

19

including debugging information and disabling any optimization. Then, the debugger DDT is
launched with the graphical user interface forge. With the DDT action Run, applications are
executed via batch system by default. However, changing to interactive execution is possi-
ble, e.g. within an interactive job on a compute node. With the DDT action Attach, the de-
bugger connects to processes of already running jobs when started on the executing com-
pute node. In the analysis, single source lines can be resolved for different threads and pro-
cesses, respectively.

Links:
https://developer.arm.com/documentation/101136/22-0-2

6.4.2 Perforce TotalView

TotalView is a debugger from Perforce for parallel applications (both multi-threaded and
MPI). As TotalView is integrated with the Intel MPI and Open MPI libraries, the according
environment module totalview requires an Intel MPI or Open MPI module. Executables to
be analyzed are instrumented by

mpiicc|mpigcc|mpiifort|mpif90… -g -O0

including debugging information and disabling any optimization. Then, the debugger is
launched with the graphical user interface totalview. With the action Debug a (Parallel)
Program, applications are executed via batch system by default. However, changing to inter-
active execution is possible, e.g. within an interactive job on a compute node. With the ac-
tion Attach to Process, the debugger connects to processes of already running jobs when
started on the executing compute node. In the analysis, single source lines can be resolved
for different threads and processes, respectively.

Links:
https://help.totalview.io/

6.4.3 Intel Inspector

The Inspector is a memory debugger for multi-threaded applications. As it relies on the Intel
compilers, the according environment module inspector requires an Intel compiler mod-
ule. Executables to be analyzed are instrumented by

icc|icpc|ifort -g -O0

Then, the Inspector can be launched with the command line user interface inspxe-cl or
the graphical user interface inspxe-gui. Within these environments, the application is
executed and analyzed. Issues in memory access (memory leaks, race conditions, etc.) are
pointed out. In the analysis, single source lines from the relating code sequences can be re-
solved for different threads and processes, respectively.

Links:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html

https://developer.arm.com/documentation/101136/22-0-2
https://help.totalview.io/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/inspector.html

20

6.5 Profiler

6.5.1 PAPI Library

The PAPI library collects information from the performance counters in the processor hard-
ware. The operating system already provides PAPI. There is no module to load. The utiliza-
tion of PAPI by High Level Functions is straightforward:

C FORTRAN 90
#include <papi.h>

PAPI_flops(&rtime, &ptime,

&flpops, &mflops);

/* a lot of work */

PAPI_flops(&rtime, &ptime,

&flpops, &mflops);

printf("%f %f %lld %f\n", rtime,

ptime, flpops, mflops);

#include "f90papi.h"

call PAPIF_flops(real_time,&

proc_time, flpops, mflops, check)

! a lot of work

call PAPIF_flops(real_time,&

proc_time, flpops, mflops, check)

print *, real_time, proc_time,&

flpops, mflops, check

Include the header via preprocessing, place according calls around the source code of inter-
est and link with the library (link option -lpapi).

Links:
https://bitbucket.org/icl/papi/wiki/Home

6.5.2 Intel Advisor

Advisor is a profiler, which gives advice where to introduce vectorization and threading into
the application. The executable needs to be compiled with debugging information

icc|icpc|ifort -g -O2

for the source code resolved analysis. All optimizations have to be specified explicitly since
the compiler option -g sets no optimization by default. As Advisor also relies on the Intel
compilers, the according environment module advisor requires an Intel compiler module.
After loading this module, Advisor can be launched with the command line user interface
advixe-cl or the graphical user interface advixe-gui. Within these environments, the
application is executed and analyzed. Critical source code lines are marked with recommen-
dations how to change to code.

Links:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

6.5.3 Intel VTune Amplifier

VTune Amplifier is a profiler, which offers time and event based profiling. Like PAPI, VTune
Amplifier collects information from the performance counters in the processor hardware.
Therefore, the executable does not have to be instrumented. However, VTune Amplifier also
needs debugging information

icc|icpc|ifort -g -O2

https://bitbucket.org/icl/papi/wiki/Home
https://www.intel.com/content/www/us/en/developer/tools/oneapi/advisor.html

21

for the source code resolved analysis. As VTune Amplifier relies on the Intel compilers, the
according environment module vtune requires an Intel compiler module. After loading this
module VTune Amplifier can be launched with the command line user interface amplxe-cl
or the graphical user interface amplxe-gui. Within these environments, the application is
executed and analyzed. Single source lines or even assembly lines can be resolved within the
analysis of the performance data. Moreover, a call graph with critical path can be deter-
mined.

Links:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

6.5.4 Intel Trace Analyzer and Collector

The Trace Analyzer and Collector (TAC) is a profiler for MPI applications. Currently it offers
time based profiling by linking with a profiling library. As TAC relies on the Intel MPI library,
the according environment module tac requires an Intel MPI module. After loading one of
these modules the whole MPI application is instrumented at compile time by linking with
option -trace. An execution of the instrumented MPI application results in a trace file,
which then can be analyzed

traceanalyzer a.out.stf

with the Trace Analyzer.

6.5.4.1 How to filter tracing

The instrumentation by compiling with the compiler option -tcollect enables filtering of
routines to be traced. The filter rules are then defined in an appropriate configuration file for
the Trace Collector during runtime. For example, a file myconfig containing the lines

SYMBOL * FOLD

SYMBOL mykernel* ON UNFOLD

restricts tracing to the routine mykernel and those routines that it calls. The asterisk after
mykernel matches a possible underscore in compiler’s naming convention. Providing this
configuration file during runtime by the environment variable VT_CONFIG

env VT_CONFIG=myconfig srun -n $SLURM_NTASKS ./a.out

results in tracing only MPI functions called in mykernel. In the same way, specific MPI func-
tions can be filtered throughout the whole MPI application by using wildcard expressions
matching a subset of MPI functions. Please refer to the manual page of VT_CONFIG for more
details on the Trace Collector configuration file.

Links:
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/trace-analyzer.html

22

6.5.5 ARM Forge/MAP

Forge is a debugger/profiler from ARM for parallel applications (both multi-threaded and
MPI). As Forge is integrated with the Intel MPI and Open MPI libraries, the according envi-
ronment module forge requires an Intel MPI or Open MPI module. When using the profiler
MAP, executables to be analyzed are instrumented by

mpiicc|mpigcc|mpiifort|mpif90… -g –O2

including debugging information and recovering optimization. Then, the profiler MAP is
launched with the graphical user interface forge. With the MAP action Profile, applications
are executed via batch system by default. However, changing to interactive execution is pos-
sible, e.g. within an interactive job on a compute node. In the analysis, single source lines
can be resolved for different threads and processes, respectively.

Links:
https://developer.arm.com/documentation/101136/22-0-2

6.5.6 Vampir

Vampir is another profiler for MPI applications. Its instrumentation with the tracing tool
Score-P provides time based profiling and event based profiling via the PAPI library. As we
have built Score-P with both Intel and Open MPI, the according environment module
scorep requires an Intel MPI or Open MPI module. After loading the module, the whole
MPI application is instrumented by compiling with compiler wrappers

Compiler C/C++

All Compilers scorep mpiicc/mpicc/mpiicpc/mpicxx

FORTRAN 77/90
scorep mpiifort/mpif77/mpif90

An execution of the instrumented MPI application results in a trace file. After loading the
module vampir, this trace file can be analyzed

vampir traces.otf2

with Vampir.

Links:
https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampir
https://www.vi-hps.org/projects/score-p

https://developer.arm.com/documentation/101136/22-0-2
https://tu-dresden.de/die_tu_dresden/zentrale_einrichtungen/zih/forschung/projekte/vampir
https://www.vi-hps.org/projects/score-p

